Vehicle Routing Problem with Time Windows in Agricultural Food Sector: Mathematical Modeling Example on Taşköprü Garlic


Abstract views: 73 / PDF downloads: 20

Authors

Keywords:

Time-Windowed Vehicle Routing Problem, Mathematical Modeling, GAMS, Agricultural Logistics, Cost Optimization

Abstract

Logistics plays a critically important role in establishing a sustainable supply chain in the agricultural food sector. This study examines the logistical optimization problem faced by a garlic-producing company in Taşköprü district of Kastamonu for the monthly distribution of 24 tons of products to 18 different cities. In the research, a detailed mathematical model was developed for the time-windowed vehicle routing problem (TWVRP) and this model was solved using GAMS Studio (49.6.1) software. The developed model simultaneously optimizes different acceptance hours at each delivery point, 4-ton vehicle capacity constraints, and multi-point distribution requirements. The model solution reached the optimal result after a computation time of 14 hours and 38 minutes, determining a total of 7 different routes. According to the obtained findings, the total distribution cost was determined as 161.612,88 TL. This means that the average distribution cost per kilogram is 6,73 TL. In terms of effective vehicle capacity utilization, 100% capacity was achieved on 57% of the routes, while 87.5% capacity utilization was achieved on 3 routes, and 25% capacity utilization was achieved on the remaining 1 route.These routes, covering a total distance of 10.802 km, meet all time window constraints, and with the longest route being 2,154 km, they remain within legal working time limits with two drivers. When examining the cost structure, driver costs constitute 40.1% of the total cost (64.818 TL), fuel expenses account for 38.5% (62.225,28 TL), and vehicle depreciation costs represent 21.4% (34.569,60 TL). It has been determined that the proposed model provides an applicable solution for systematic planning of time-critical deliveries in the agricultural food sector and offers a scalable optimization tool for similar enterprises.

References

Atmaca, E. (2012). Bir kargo şirketinde araç rotalama problemi. Tübav Bilim Dergisi, 5(2), 12-27.

Boz, E., Çalık, A., & Şahin, Y. (2023). Yeşil zaman pencereli ve eş zamanlı topla dağıt araç rotalama problemlerinin metasezgisel yöntemlerle çözümü. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 39(2), 757-770. https://doi.org/10.17341/gazimmfd.1180965

Chen, H., Wang, W., Jia, L., & Wang, H. (2024). Research on time-varying path optimization for multi-vehicle type fresh food logistics distribution considering energy consumption. Scientific Reports, 14, 26639. https://doi.org/10.1038/s41598-024-78639-1

Chung, S. H., Sah, B., & Lee, J. (2020). Optimization for drone and drone-truck combined operations: A review of the state of the art and future directions. Computers & Operations Research, 123, 105004. https://doi.org/10.1016/j.cor.2020.105004

Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568-581. https://doi.org/10.1287/opre.12.4.568

Cömert, S. E., Yazgan, H. R., & Görgülü, N. (2019). Eş zamanlı topla dağıt araç rotalama problemi için iki aşamalı bir çözüm yöntemi önerisi. International Journal of Advances in Engineering and Pure Sciences, 31(2), 107-117.

Çetin, O., & Özçakar, N. (2019). Akaryakıt dağıtımında araç rotalama problemi için bir başlangıç çözümü. Trakya Üniversitesi Sosyal Bilimler Dergisi, 21(2), 625-640.

Çetin, S., & Gencer, C. (2010). Kesin zaman pencereli-eş zamanlı dağıtım toplamalı araç rotalama problemi: Matematiksel model. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25(3), 465-474.

Çiçekli, G. U., & Cihangir, E. (2019). Dubai çöp toplama araç rotalama problemi için genetik algoritma. Business and Organization Research, 8, 156-167.

Dağıstanlı, A. H. (2024). Çok ürünlü çok depolu araç rotalama problemi: Askeri ilaç fabrikası örneği. Politeknik Dergisi, 27(1), 89-102.

Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80-91. https://doi.org/10.1287/mnsc.6.1.80

Dedetürk, B. K., Kolukısa, B., & Özmen, M. (2023). Zaman pencereli araç rotalama problemleri için kümeleme temelli klonal seçim algoritması. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 10(21), 307-320.

Düzakın, E., & Demircioğlu, M. (2009). Araç rotalama problemleri ve çözüm yöntemleri. Çukurova Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 13(2), 68-87.

Gendreau, M., Laporte, G., & Séguin, R. (1996). Stochastic vehicle routing. European Journal of Operational Research, 88(1), 3-12. https://doi.org/10.1016/0377-2217(95)00050-X

Goel, A., & Gruhn, V. (2008). A general vehicle routing problem. European Journal of Operational Research, 191(3), 650-660. https://doi.org/10.1016/j.ejor.2007.01.047

Han, H., & Cueto, P. E. (2015). Waste collection vehicle routing problem: Literature review. Promet-Traffic & Transportation, 27(4), 345-358. https://doi.org/10.7307/ptt.v27i4.1616

Kalaycı, B. C., & Yılmaz, Y. (2023). Elektrikli araç rotalama problemleri üzerine bir literatür incelemesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 29(4), 412-425. https://doi.org/10.5505/pajes.2023.49769

Kantasa-ard, A., Chargui, T., Bekrar, A., AitElCadi, A., & Sallez, Y. (2023). Dynamic sustainable multiple-depot vehicle routing problem with simultaneous pickup and delivery in the context of the physical internet. Journal of International Logistics and Trade, 21(3), 110-134.

Kara, İ., Kara, B. Y., & Yetis, M. K. (2008). Cumulative vehicle routing problems. Vehicle Routing Problem, 6, 85-98.

Karayolları Genel Müdürlüğü. (t.y.). İller arası mesafe cetveli. Erişim adresi: https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Root/Uzakliklar.aspx

Keskintürk, T., Topuk, N., & Özyeşil, O. (2015). Araç rotalama problemleri ve çözüm yöntemleri. İşletme Bilimi Dergisi, 3(2), 77-107.

Li, C.-L., Simchi-Levi, D., & Desrochers, M. (1992). On the distance constrained vehicle routing problem. Operations Research, 40(4), 790-799. https://doi.org/10.1287/opre.40.4.790

Marinakis, Y., Marinaki, M., & Migdalas, A. (2019). A multi-adaptive particle swarm optimization for the vehicle routing problem with time windows. Information Sciences, 481, 311-329. https://doi.org/10.1016/j.ins.2019.01.002

McCullough, E. B., & Matson, P. A. (2024). The role of midstream actors in advancing the sustainability of agri-food supply chains. Nature Sustainability, 7, 245-256. https://doi.org/10.1038/s41893-024-01291-2

Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery and pick-up points. Transportation Research Part A: General, 23(5), 377-386. https://doi.org/10.1016/0191-2607(89)90085-X

Polimeni, A., Donato, A., & Belcore, O. M. (2024). Urban freight distribution with electric vehicles: Comparing some solution procedures. Frontiers in Future Transportation, 5, 1491799. https://doi.org/10.3389/ffutr.2024.1491799

Prajapati, D., Chan, F. T. S., Daultani, Y., & Pratap, S. (2022). Sustainable vehicle routing of agro-food grains in the e-commerce industry. International Journal of Production Research, 60(22), 6910-6927. https://doi.org/10.1080/00207543.2022.2034192

Praveen, V., Keerthika, P., Sivapriya, G., Sarankumar, A., & Bhasker, B. (2022). Vehicle routing optimization problem: A study on capacitated vehicle routing problem. Materials Today: Proceedings, 64, 670-674. https://doi.org/10.1016/j.matpr.2022.05.087

Reyes, D., Savelsbergh, M., & Toriello, A. (2017). Vehicle routing with roaming delivery locations. Transportation Research Part C: Emerging Technologies, 80, 71-91. https://doi.org/10.1016/j.trc.2017.04.003

Sezen, K. H., & Çam, N. Ö. (2018). Toplam bekleme süresini enküçükleme amaçlı bir araç rotalama problemi. International Journal of Social Inquiry, 11(1), 63-82.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research, 35(2), 254-265. https://doi.org/10.1287/opre.35.2.254

Subramanian, A., Uchoa, E., & Ochi, L. S. (2010). New lower bounds for the vehicle routing problem with simultaneous pickup and delivery. İçinde Experimental Algorithms: 9th International Symposium, SEA 2010 (ss. 276-287). Springer.

Şehitoğlu, A., & Ağayeva, Ç. (2022). Homojen ve heterojen filolu, kapasite kısıtlı araç rotalama problemi için bir uygulama. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 9(1), 9-19.

Toth, P., & Vigo, D. (2002). The vehicle routing problem. Society for Industrial and Applied Mathematics.

Tüzemen, A., & Yıldız, Ç. (2019). A solution proposal to vehicle routing problem with integer linear programming: a distributor company sample. International Journal of Contemporary Economics and Administrative Sciences, 9(1), 46-78

Wang, S., Tao, F., Shi, Y., & Wen, H. (2024). A two-echelon multi-trip capacitated vehicle routing problem with time windows for fresh e-commerce logistics under front warehouse mode. Systems, 12(6), 205. https://doi.org/10.3390/systems12060205.

Worasan, K., Sethanan, K., Moonsri, K., & Golinska-Dawson, P. (2022). The multi-product vehicle routing problem with cross-docking: A novel strategy hybrid bat algorithm for Industry 3.5 in Thailand's food industry. International Journal of Logistics Research and Applications, 27(2), 284-308. https://doi.org/10.1080/13675567.2022.2074381.

Yazgan, H. R., & Büyükyilmaz, R. G. (2017). Eş zamanlı topla dağıt araç rotalama problemine sezgisel bir çözüm yaklaşımı. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 436-449.

Yıldız, Ç., & Tüzemen, A. (2018). Kapasite Kısıtlı Araç Rotalama Problemine Dal-Kesme Algoritmasıyla Bir Çözüm Önerisi. 3. Lisansüstü İşletme Öğrencileri Sempozyumu - Tokat, 544 – 556

Yurdakul, K., Alakaş, M. H., & Eren, T. (2021). Evde sağlık hizmetlerinin planlanması: Araç rotalama ve çizelgeleme. Journal of Turkish Operations Management, 3(2), 1456-1470.

Zhang, Y., Li, X., & Zhou, X. (2020). Optimization of transportation routing problem for fresh food in time-varying road network: Considering both food safety reliability and temperature control. PLOS ONE, 15(7), e0235950. https://doi.org/10.1371/journal.pone.0235950.

Published

2025-12-16

How to Cite

Karamahmutoğlu, F., & Tüzemen, A. (2025). Vehicle Routing Problem with Time Windows in Agricultural Food Sector: Mathematical Modeling Example on Taşköprü Garlic. Journal of Academic Opinion, 5(2), 66–81. Retrieved from http://academicopinion.org/index.php/pub/article/view/85

Issue

Section

Articles