Grey Wolf Optimızation Algorithm In Project Scheduling Problems: An Application In The Museum Design Sector


Keywords:
Project Scheduling, Scheduling Problems, Meta Heuristic Methods, Grey Wolf OptimizationAbstract
In this study, the aim is to address the scheduling problem encountered in the project management of a company operating in the museum design sector by utilizing the Grey Wolf Optimization (GWO) algorithm, a meta-heuristic approach. The completion times of 19 different activities related to the project scheduling problem addressed in the research, which teams will undertake the activities, the precedencies related to the activities and the constraints encountered in the problem are known. The scheduling problem, which focuses on the processes related to interior design and the creation of exhibition spaces, aims to minimize the completion time. The solution to the problem, along with its data and constraints, was obtained using the Grey Wolf Optimization algorithm implemented in Python. The company set a target completion time of 260 days, while the Critical Path Method (CPM) calculated a duration of 242 days. However, the applied GWO method reordered tasks within the framework of constraints and variables, achieving a completion time of 213 days. This outcome represents a successful result compared to the initially defined timeframes. Consequently, solving a real operational process problem in the museum design sector with a successful outcome highlights the originality of this research.
References
Blum, C. and Roli, A. (2003). Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Computing Surveys (CSUR), 35(3): 268-308.
Brucker, P., Drexl, A., Möhring, R., Neumann, K. and Pesch, E. (1999). Resource-Constrained Project Scheduling: Notation, Classification, Models, and Methods. European Journal of Operational Research, 112(1): 3-41.
Brucker, P. and Kampmeyer, T. (2005). Tabu Search Algorithms for Cyclic Machine Scheduling Problems. Journal of Scheduling, 8: 303-322.
Burke, E. K. and Kendall, G. (2005). Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. Springer.
Chen, S., Zheng, J. and Zhang, W. (2025). A Cooperative Grey Wolf Optimizer For The Joint Flowshop Scheduling Problem With Sequence-Dependent Set-Up Time. Engineering Optimization, 57(3): 739-761.
Çorumlu, V., Atalay, K. D. ve Dinler, E. (2024). Proje Çizelgelemede Bulanık Doğrusal Programlama İle Yeni Bir Yöntem Önerisi: Yazılım Projesinde Uygulama. Journal of Turkish Operations Management, 8(1): 20-38.
Demeulemeester, E. and Herroelen, W. (2002). Project Scheduling: A Research Handbook. Kluwer Academic Publishers.
Ebesek, Ş. ve Yaman, H. (2019). Kaynak Kısıtlı Proje Çizelgeleme Probleminde Tekrarsız Kromozom Destekli Paralel Genetik Algoritma Uygulaması. Journal of International Social Research, 12(62).
Falk, J. H. and Dierking, L. D. (2013). The Museum Experience Revisited. Walnut Creek, CA: Left Coast Press.
Gantt, H. L. (1919). Organizing for Work. Harcourt, Brace and Howe.
Glover, F. and Kochenberger, G. A. (2006). Handbook of Metaheuristics, Resende, M.G.C., Ribeiro, C.C., Glover, F. and Marti, R. (Eds.), Scatter Search and Path-Relinking:Fundamentals, Advances, and Applications (pp. 1-20). Springer.
Hartmann, S. (2001). Project Scheduling with Multiple Modes: A Genetic Algorithm. Annals of Operations Research, 102: 111-135.
Türkiye İstatistik Kurumu (2022) Erişim Adresi: https://data.tuik.gov.tr/Bulten/Index?p=Kulturel-Miras-Istatistikleri-2022 , Erişim Tarihi (07.09.2024).
Huang, X., Xie, M., An, D., Su, S. and Zhang, Z. (2024). Task Scheduling in Cloud Computing Based on Grey Wolf Optimization with A New Encoding Mechanism. Parallel Computing, 122: 103111.
Jadhav, A. N. and Gomathi, N. (2018). WGC: Hybridization of Exponential Grey Wolf Optimizer with Whale Optimization for Data Clustering. Alexandria Engineering Journal, 57(3): 1569-1584.
Jiang, T. and Zhang, C. (2018). Application of Grey Wolf Optimization for Solving Combinatorial Problems: Job Shop and Flexible Job Shop Scheduling Cases. Ieee Access, 6: 26231-26240.
Kadalia, K., Shah, V. and Kadam, R. (2017). Comparative Study of Grey Wolf Optimization with Different Optimization Algorithms for Optimal Power Flow Solutions. IEEE Transactions on Power Systems, 32(2): 1383-1394.
Karakoyun, M., (2021). Çok Amaçlı Optimizasyon Problemlerinin Çözümü İçin Kurbağa Sıçrama Ve Gri Kurt Optimizasyonu Algoritmaları Tabanlı Hibrit Bir Yöntemin Geliştirilmesi. Doktora Tezi. Konya: Konya Teknik Üniversitesi Lisansüstü Eğitim Enstitüsü.
Kerzner, H. (2017). Project Management: A Systems Approach to Planning, Scheduling, and Controlling (12th ed.). Wiley.
Kolaylıoğlu, Ö. (2006). İnşaat Sektöründe Proje Yönetimi ve Proje Yöneticisi. Dokuz Eylül Üniversitesi. Yüksek Lisans Tezi. İzmir: Sosyal Bilimler Enstitüsü
Kolisch, R. and Hartmann, S. (2006). Experimental İnvestigation of Heuristics for Resource-Constrained Project Scheduling: An Update. European Journal of Operational Research, 174(1): 23-37.
Kurt, Ö. (2006). Proje Planlama Ve Programlama Teknikleri Ve İnşaat Sektörüne Ait Bir Uygulaması. Yüksek Lisans Tezi. Antalya: Akdeniz Üniversitesi Sosyal Bilimler Enstitüsü.
Mirjalili, S., Mirjalili, S. M. and Lewis, A. (2014). Grey Wolf Optimizer. Advances İn Engineering Software, 69: 46-61.
PMI (Project Management Institute). (2017). A Guide to The Project Management Body of Knowledge(6th ed.). Project Management Institute.
Rasmussen, R. V. and Sørensen, K. (2000). The Use of Genetic Algorithms in Project Scheduling. Computers & Operations Research, 27(6): 527-541.
Ruiz, R. and Stützle, T. (2007). A Simple and Effective İterated Greedy Algorithm for The Permutation Flowshop Scheduling Problem. European journal of operational research, 177(3): 2033-2049.
Thierauf, R. J. and Klekamp, R. C. (1975). Decision Making Through Operations Research. Wiley & Sons
Tolouei, K. and Moosavi, E. (2020). Production Scheduling Problem and Solver İmprovement Via İntegration of The Grey Wolf Optimizer into The Augmented Lagrangian Relaxation Method. SN Applied Sciences, 2(12): 1963.
Van Rossum, G. and Drake, F. L. (2009). Introduction to PYTHON 2.6. CreateSpace.
Vanhoucke, M. (2012). Project Management with Dynamic Scheduling: Baseline Scheduling, Risk Analysis and Project Control. Springer.
Yilmaz, M., Dede, T. and Grzywiński, M. (2023). Investigating Multi-Objective Time, Cost, and Risk Problems Using The Grey Wolf Optimization Algorithm. Construction of Optimized Energy Potential Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 12(1): 79-86.
Zhang, S. and Zhou, Y. (2015). Grey Wolf Optimizer Based on Powell Local Optimization Method for Clustering Analysis. Discrete Dynamics in Nature and Society, 2015(1): 481360.
Zhou, K., Tan, C., Zhao, Y., Yu, J., Zhang, Z. and Wu, Y. (2024). Research On Solving Flexible Job Shop Scheduling Problem Based On İmproved GWO Algorithm SS-GWO. Neural Processing Letters, 56(1): 26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Academic Opinion

This work is licensed under a Creative Commons Attribution 4.0 International License.